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SUMMARY 

The concept of using f l ex ib l e  foam f o r  t he  erect ing mechanism and supporting 
s t ruc ture  of erectable  Yagi disk antenna elements f o r  use i n  a space environment 
has been investigated.  
s t r a i n  propert ies  of t h e  foams as they per ta in  t o  the  erectable elements, and the  
e f f ec t s  of some vacuum and simulated so la r  radiat ion on these propert ies .  Ful l -  
scale  erectable  Yagi disk antenna elements were investigated f o r  packaging and 
erect ion a b i l i t y ,  v ibra t ion  damping i n  a vacuum, and temperature d i f f e r e n t i a l  i n  
a vacuum. The e l e c t r i c a l  performance charac te r i s t ics  of t he  erectable  elements 
were compared w i t h  those of a standard element. 

Tests were made t o  determine the  recovery and s t r e s s -  

There were no s igni f icant  detrimental  e f f ec t s  of the  simulated space envi- 
ronment on the  recovery propert ies  and res i l ience  of the  foam. The packaging, 
erection, damping, and temperature d i f f e r e n t i a l  propert ies  of the  erectable  e le-  
ments were acceptable within the  tolerances necessary f o r  normal antenna perform- 
ance. 
elements were e s sen t i a l ly  the  same a s  those of a standard element. 

The e l e c t r i c a l  performance charac te r i s t ics  of the  undisturbed erectable  

INTRODUCTION 

One of t he  basic  problems i n  the  design of erectable  s t ruc tures  f o r  space 
vehicles i s  t o  m e e t  packaging requirements during the  vehicle launch phase with- 
out unduly complicating t h e  erect ion technique. 
t i o n  i s  using f l ex ib l e  foam which can be compressed f o r  packaging and which when 
released i s  inherently self-erecting. This same mater ia l  may a l so  be used f o r  
t he  supporting s t ruc ture  of vehicles o r  components. I n  t h i s  connection, the  con- 
cept of using f l ex ib l e  foam f o r  t h e  erect ing mechanism and supporting s t ruc ture  
of erectable  Yagi d i sk  antenna elements fo r  use i n  a space environment has been 
investigated.  A descr ipt ion of t he  antenna element used as the  basic  configura- 
t i o n  for the  erectable  elements i s  given i n  reference 1, and a photograph of the  
element used as a standard element i s  shown i n  f igure 1. I n  the  present inves t i -  
gation, t he  d i rec tor  assembly of t he  element, which consis ts  of a rod with 11 
equally spaced disks,  w a s  made erectable  by replacing the  rod with flexible foam. 

One simple technique f o r  erec- 
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Figure  1.- Y a g i  d i s k  an tenna  ( s t a n d a r d  e l emen t )  

Since the erectable  elements were 
dependent on the f l e x i b l e  foam for 
mechanical performance and s t r u c t u r a l  
i n t e g r i t y  i n  a space environment, inves- 
t i g a t i o n s  were made t o  determine the 
recovery and s t r e s s - s t r a i n  propert ies  of 
the foams and the e f f e c t s  of some vacuum 
and simulated so la r  radiat ion on these 
properties.  Investigations were then 
made t o  determine the packaging and 
erec t ion  a b i l i t y  of the erectable  e le-  
ments and how the erect ion compared with 
the recovery propert ies  of the f l e x i b l e  
foams. The erectable elements w e r e  a l so  
invest igated f o r  vibrat ion damping and 
the e f f e c t s  of temperature d i f f e r e n t i a l  
i n  a vacuum to determine t h e i r  a b i l i t y  
t o  remain within the allowable to le r -  
ances necessary f o r  proper e l e c t r i c a l  
performance. The e l e c t r i c a l  performance 
c h a r a c t e r i s t i c s  of two of the erectable  
elements were measured ( r e f .  1) and com- 
pared with those of a standard element. 

YAGI DISK ANTENNA ELEMENTS 

The Yagi d i sk  antenna element w a s  
chosen as the basic  configuration f o r  
the erectable  elements because of i t s  
broadband properties.  When these prop- 
e r t i e s  a re  in te rpre ted  i n  terms of phys- 
i c a l  dimensions, they allow large physi- 
c a l  tolerances on the s t ruc ture  when 
used i n  narrow band application. Since 
lightweight f l e x i b l e  s t ruc tures  a re  
required f o r  erectable  antennas, the 

physical tolerances of the Yagi disk antennas looked very favorable. 
evaluation of the Yagi disk antenna elements and arrays of these elements are pre- 
sented i n  reference 1. 

A study and 

The elements consisted of two basic par ts .  (See f i g .  1.) One w a s  the dipole- 
groundplane u n i t  which incorporated the groundplane, feed buckets, and dipoles.  
The second p a r t  w a s  the d i r e c t o r  assembly which consisted of 11 direc tors  (disks)  
equal ly  spaced on a rod. The l e a s t  c r i t i c a l  of the  s t r u c t u r a l  tolerances neces- 
sa ry  for proper e l e c t r i c a l  performance of the elements were disk spacing and 
def lect ions of the d i r e c t o r  assemblies. For instance, var ia t ions  up t o  +-25 per- 
cent i n  disk spacing could occur without ser ious degradation of the element gain, 
and def lect ions of +1 inch (measured a t  the t i p  of the element) had no s igni f icant  
e f f e c t  on the antenna patterns;  however, def lect ions as large as 52 inches caused 
the beam t o  tilt s l i g h t l y  and increased the sidelobe level .  Since both of these 
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tolerances were associated with the d i rec tor  assembly, t h i s  pa r t  of the element 
was selected as the most amenable f o r  the erectable s t ructure .  

DESCRIPTION OF ERECTABLE ELESIENTS 

Sketches and pictures  of the erectable  elements are  given i n  f igures  2 t o  4. 
In general, the d i r ec to r  assemblies of these elements  w e r e  made erectable  by 
replacing the rod i n  the standard element with polyether f lex ib le  urethane foam 
which a l so  acted as spacers f o r  the directors .  The dipole-groundplane un i t s  were 
made of formica pr in ted-c i rcu i t  board on which the groundplanes, feed buckets, and 
dipoles were etched. For t h i s  investigation the dipole-groundplane uni t s  were 
considered only as housing u n i t s  f o r  the d i rec tor  assemblies when the elements 
were packaged. 

There were four erectable  elements used in  the investigation and f o r  ident i -  
( the number preceding the name f i ca t ion  purposes they are  designated as follows: 

denotes the density i n  pounds per cubic foot  of the f lex ib le  foam used i n  the  
d i rec tor  assembly). 

(1) 1.7 cyl indr ica l  element 

(2)  1.0 cy l indr ica l  element 

(3) 1 .7  pyramidal element 

(4 )  1.0 pyramidal element 

The only difference i n  the two c y l i n u i c a  elements w a s  the  dens ty of the flex- 
A sketch of the elements i s  given i n  f igure 2 along with pictures  of i b l e  foam. 

the 1.7 cy l indr ica l  element. The d i rec tors  i n  the elements, with the exception 
of the f i rs t  (d i rec tors  nearest  the  groundplanes), were made of l.25-mil perfo- 
ra ted  brass foil. The first di rec tors  w e r e  m a d e  of formica pr inted-circui t  board 
and had four tabs  which f i t t e d  into s l o t s  i n  the f i b e r  glass  and p l a s t i c  canis te rs  
mounted i n  the center  of the dipole-groundplane uni ts .  These s l o t s  acted as 
guides and stops t o  posi t ion accurately the f i rs t  d i rec tors  above the  groundplanes 
when the elements w e r e  erected.  Flexible foam, between the groundplanes and f irst  
directors ,  remained under s l i g h t  compression a f t e r  erect ion t o  hold these direc- 
t o r s  i n  place. The canis te rs  housed the d i rec tor  assemblies when packaged. 
f i g .  2(c).)  
feed buckets since they were unnecessary i n  the s t r u c t u r a l  tests, but they were 
added for the range tes t  reported i n  reference 1. 

(See 
The dipole-groundplane un i t s  of the cy l indr ica l  elements did not have 

It w a s  apparent t ha t  the d i r ec to r  assemblies of the cy l indr ica l  elements were 
very limber and t h a t  forces such as those encountered during changes i n  orienta- 
t i o n  of a space vehicle would r e s u l t  i n  def lect ions t h a t  might exceed the  allow- 
able tolerances.  Two new elements were b u i l t  with increased s t i f f n e s s  by using 
l a rge r  foam spacers i n  the d i rec tor  assemblies. The foam i n  these elements w a s  
shaped t o  form frustums of  pyramids. 
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The 1.7 pyramidal element i s  shown i n  f igure  3 .  The d i rec tors  i n  t h i s  e le -  
ment were made of 1.25-mil perforated brass f o i l  and no spec ia l  e f f o r t  was made t o  
pos i t ion  t h e  f i rs t  d i r e c t o r  accurately.  
u n i t  w a s  3.5 inches high t o  f a c i l i t a t e  packaging and the  feed buckets were of an 
equal height t o  r e t a i n  symmetry. 

The dipole box of the  dipole-groundplane 

The 1.0 pyramidal element i s  shown i n  figure 4. The d i rec tors  i n  t h i s  
element were made of 1.0-mil aluminum f o i l .  
2.18 inches high t o  accommodate t h e  dipoles and feed buckets which, i n  t h i s  case, 
corresponded t o  t h e  height of t h e  element when packaged. 

The dipole-groundplane u n i t  was 

The polyether f l e x i b l e  urethane foams used i n  this invest igat ion were of 
open-cell construction and white i n  appearance. 
1.0 pounds p e r  cubic foot  and a l l  t h e  t es t  samples and d i r e c t o r  spacers of a 
given density were cut from a s ingle  block of foam. Both foams had an e f f e c t i v e  
grain i n  t h e i r  c e l l  s t ruc ture  which w a s  apparently a r e s u l t  of t h e  foaming proc- 
ess.  
t i o n  perpendicular t o  t h e  grain.  
t ransverse def lec t ion  o r  folding of t h e  foam. 
def lect ion i s  shown i n  f igure  5 which i s  a p i c t u r e  of a c y l i n d r i c a l  foam spacer 

They had dens i t ies  of 1.7 and 

This e f f e c t i v e  gra in  allowed t h e  foam t o  compress properly only i n  a direc- 
Compression i n  any o ther  d i rec t ion  caused a 

An example of the  transverse 

Figure 5.- Transve r se  d e f l e c t i o n  of foam sample s u b j e c t e d  t o  a Yloa t ing  load .  L-61-4843 
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subjected t o  a f loa t ing  load act ing diagonally across the  grain.  The direct ion 
of the  grain w a s  not necessarily consistent throughout a s ingle  block of foam; 
therefore ,  i n  cu t t ing  samples and d i rec tor  spacers from di f fe ren t  pa r t s  of a 
block, it w a s  necessary t o  cut them oversize, determine the  grain direct ion,  and 
recut them so  t h a t  t he  grain w a s  properly oriented with respect t o  the  loading o r  
compression d i rec t ion .  

Vacuum pressure 
(average ) , 

Hg 

APPARATUS AND PROCEDURE 

Foam Exposure time 
Radiation temperature, ( t o t a l ) ,  Remarks 

OF hr  

Simulated Space Environment 

2.5 x 10-2 

5.0 x 10-6 

1. o x 10-5 

2.0 X 

2.0 X 

The simulated space environment t o  which samples of the 1.0- and 1.7-pound- 
per-cubic-foot foams were exposed are  given i n  t ab le  I. The exposures were made 
i n  a b e l l - j a r  vacuum chamber (18 inches i n  diameter and 30 inches high).  

TABLE I.- VACUUM AND SOLAR RADIATION EXPOSURE OF WLYETHER 

FLEXIBLE UFWEWOI FOAM 

77 570 N o  change 
77 129 No change 

----------------- 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
Ultraviolet  90 53 Slight discoloration 

Infrared 150 25 No change 
Infrared 200 70 Weight loss ( 0 . 3  percent) 

3,650 t o  3,663A 

aSpecimen s ize  = 3 in. diameter X 2 in .  high. 

A sample 3 inches i n  diameter and 2 inches th ick  of the  1.7-pound-per-cubic- 
foot  foam was exposed t o  cycl ic  vacuum pressures of 10-2 t o  
mercury f o r  a t o t a l  of 847 hours (about 35 days). This exposure included ultra- 
v io l e t  radiat ion f o r  53 hours and infrared radiat ion f o r  foam temperatures up t o  
150° F f o r  25 hours and x)Oo F f o r  70 hours. 
the vacuum-system diffusion pump and radiat ion sources being turned off during the  
time the  system could not be monitored. 
40-hour work week. 
lamp which covered most of t he  near u l t r av io l e t  spectrum with the  primary ultra- 
v i o l e t  emission i n  the  3,650 t o  3,663 angstrom wavelength region. 
mounted externally and radiated through a quartz port  i n  the  base p la t e  of t he  
b e l l  jar with about 10-percent loss .  The sample was placed 18 inches from the  

millimeters of 

The cycl ic  exposure resul ted from 

The cycle can be based on a normal ?-day 
The u l t r av io l e t  radiat ion w a s  obtained from a B H ~  mercury arc  

The lamp w a s  
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lamp. 
a Wcalex r e f l ec to r  and about 6 inches from the  foam sample. 
t u re  was measured by a copper-constantan thermocouple imbedded i n  the  foam about 
1/8 inch from the surface of t he  foam. 

The infrared heat w a s  obtained from a 500-watt quartz heater mounted above 
The foam tempera- 

A sample 3 inches i n  diameter and 2 inches th ick  of t he  1.0-pound-per-cubic- 
foot foam was exposed t o  a continuous vacuum pressure of 1 x 10-5 millimeters of 
mercury and u l t r av io l e t  radiat ion from the  BH6 mercury a rc  lamp f o r  50 hours. 
sample was placed 15 inches from the  lamp. 

The 

Foam Recovery Test 

The recovery propert ies  of foam samples 3 inches i n  diameter and 2 inches 
th ick  and w i t h  a density of 1.7 pounds per  cubic foot  were determined a t  atmos- 
pheric pressure a f t e r  being compressed t o  a r a t i o  of about 8 t o  1 f o r  20 hours. 
The recovery propert ies  of foam samples 4 inches square and 4 inches th ick  w i t h  
a density of 1.0 pound per  cubic foot  were determined a t  atmospheric pressure 
and a t  a pressure of 1 x 
r a t i o  of about I 2  t o  1 f o r  20 hours. 
compressed with dead weights and recovery was measured mechanically a t  varying 
time in t e rva l s  a f t e r  the  weights were removed. For the  t e s t  i n  t h e  vacuum, the  
foam was compressed by a motor-driven plunger. When measuring the  recovery, t he  
plunger w a s  backed off  from the  foam as a th in  metal disk on the  surface of the  
foam shorted two contacts i n  the  base of t he  plunger and completed the  e l e c t r i c a l  
c i r c u i t  t o  the  dr ive motor. The amount of plunger t r a v e l  was obtained w i t h  a 
Brown recorder through the  use of a cal ibrated var iable  r e s i s t o r  driven d i r ec t ly  
off  t he  plunger shaf t .  
r e s t r i c t ed  by the  plunger since the  system could not respond as fast as the  foam 
recovered. 

millimeters of mercury a f t e r  being compressed t o  a 
For t h e  atmospheric t e s t s ,  the  samples were 

For the  f i rs t  3 minutes of recovery, the  foam w a s  

Foam Stress-Strain Test 

The s t r e s s - s t r a in  charac te r i s t ics  of t he  1.7- and 1.0-pound-per-cubic-foot 
foams were determined a t  atmospheric pressure by subjecting foam samples 3 inches 
i n  diameter and 2 inches th ick  t o  compression loads with dead weights. The loads 
were applied progressively without unloading u n t i l  a s t r a i n  of about 75 percent 
w a s  reached and then the  loads were removed i n  the  same manner. One of t he  char- 
a c t e r i s t i c s  of f l ex ib l e  foam i s  t h a t  the  s t r a i n  under load i s  t i m e  dependent. 
Figure 6 shows the  var ia t ion  of s t r a i n  with time f o r  a foam sample subjected t o  a 
constant load and with t h e  load removed. From these data, it i s  apparent t h a t  
useful  s t r a i n  data can only be determined a f t e r  su f f i c i en t  t i m e  has elapsed so 
t h a t  s t r a i n  i s  no longer changing rapidly with t i m e .  Therefore, the  s t r a i n  of 
t he  foam w a s  measured mechanically 5 minutes a f t e r  each load change. 

Vibration Damping Test 

Vibration damping of t h e  1.0 cy l indr ica l  element and the  1.7 pyramidal e le-  
ment were determined i n  the  vacuum chamber described previously a t  a pressure of 
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Figure 6.- Time va r i a t ion  o f  s t r a i n  i n  f l e x i b l e  foam. Foam dens i ty ,  1.7 pounds per cubic foot .  

5 x 
ca l ly  t o  minimize the  e f f ec t  of  gravi ty  and were plucked so they vibrated f ree ly .  
The vibrat ions were recorded with the  use of an o p t i c a l  system i n  which collimatec 
l i g h t  was directed on s m a l l  prisms attached t o  the  ends of t he  elements. The 
l i g h t  was re f lec ted  by the  prisms through a t h i n  s l o t  i n  a f i lm drum and onto the  
enclosed fi lm. The f i lm was moving pas t  t he  s l o t  a t  a r a t e  of 1/2 inch per  seconc 

mill imeters of mercury. The elements were t e s t ed  when hanging v e r t i -  

Temperature Dif fe ren t ia l  T e s t  

The e f f ec t  of temperature d i f f e r e n t i a l  on the  1.7 pyramidal element w a s  
determined i n  a s t e e l  vacuum chamber 2.5 feet  i n  diameter and 5 f e e t  long a t  a 
pressure of 2 x 10-5 millimeters of mercury. The element w a s  suspended from the  
top of the  chamber so tha t  the  d i rec tor  assembly was i n  a v e r t i c a l  posit ion.  
s ide of the d i r ec to r  assembly was cooled by means of a l iqu id  nitrogen reservoir  
and the  opposite s ide w a s  heated with a 2,500-watt quartz in f ra red  lamp mounted 
i n  f ront  of a re f lec tor .  Copper-constantan thermocouples were imbedded 1/8 inch 
i n  the  foam and a continuous record of t h e  temperatures w a s  obtained with a Brown 
recorder. The def lect ions due t o  the  temperature d i f f e r e n t i a l  were obtained from 
pic tures  of the  d i rec tor  assembly taken through a port  i n  the  s ide of t he  vacuum 
chamber. 

One 
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RESULTS AND DISCUSSION 

Flexible Foam 

Environmental exposure.- The vacuum and simulated solar  radiat ion t o  which 
the foam samples were exposed and some of the  r e s u l t s  of these exposures on the  
foams are presented i n  t ab le  I. The only v i s ib l e  e f f ec t  of the  environmental 
exposure on the  2-inch-thick 1.7-pound-per-cubic-foot foam sample w a s  a s l igh t  
discoloration of t h e  foam due t o  t h e  u l t r av io l e t  radiation. The l o s s  i n  weight of  
t he  foam sample w a s  only 0.3 percent and occurred while a t  foam temperatures of 
200' F during the  inf ra red  radiat ion exposure. 
exposure on the recovery and s t ress -s t ra in  propert ies  of the 1.7-pound-per-cubic- 
foot  foam are  given i n  subsequent sections of t h i s  report .  

The e f f e c t s  of t he  environmental 

There w a s  no weight change o r  discoloration of the  1.0-pound-per-cubic-foot 
foam sample due t o  the  vacuum and u l t r av io l e t  radiat ion t o  which it w a s  exposed. 

Recovery propert ies . -  The recovery propert ies  of the foams are  expressed a s  
compression set i n  percent of o r ig ina l  thickness and plot ted against  recovery time 
i n  hours i n  f igure  7. 
are presented as a comparison of t he  recovery propert ies  before and after the  envi- 
ronmental exposure. The data  f o r  t h e  1.0-pound-per-cubic-foot foam ( f i g .  7(b)) 
are presented as a comparison of recovery propert ies  at atmospheric pressure and 
i n  a vacuum (1 x 10-5 mm H g ) .  
almost immediately t o  within 10 percent of t h e i r  o r ig ina l  thickness a f t e r  constant 
def lect ions f o r  20 hours, and continued t o  recover f o r  about 6 hours a t  which t i m e  
they r e t a in  compression sets of about 2 t o  3 percent. 
foot  foam showed s l i g h t l y  b e t t e r  recovery propert ies  after the  environmental expo- 
sure. Because the  recovery of the  1.0-pound-per-cubic-foot foam i n  a vacuum w a s  
r e s t r i c t ed  by t h e  measuring system f o r  t he  f i rs t  3 minutes, the  foam did not have 
the  i n i t i a l  spring back a f t e r  re lease as d id  the  foam at atmospheric pressure when 
the  weights were suddenly removed. Even with t h i s  r e s t r i c t ion  the  foam recovered 
t o  a 3-percent compression s e t  a f t e r  about 1 hour as compared with about 5 hours 
a t  atmospheric pressure. 

The data  f o r  the  1.7-pound-per-cubic-foot foam ( f i g .  7 (a) )  

In  general, these data  show the  foams recovered 

The 1.7-pound-per-cubic- 

S t ress -s t ra in  properties.-  The loading and unloading stress-strain propert ies  
of t he  1.7-pound-per-cubic-foot foam, before and after the  environmental exposure, 
and of the unexposed 1.0-pound-per-cubic-foot foam are shown i n  f igure  8. 
general shape of t h e  curves shows that, after an i n i t i a l  s t r a i n  of about 8 percent 
of the  o r ig ina l  thickness,  stress increased very l i t t l e  with s t r a i n s  up t o  30 per- 
cent. With fu r the r  increase i n  s t ra in ,  the s t r e s s  increased rapidly.  It may be 
noted t h a t  the l i g h t e r  foam required less than half the  stress f o r  a s t r a i n  of 
about 75 percent as t h a t  required by the  denser foam. The compression res i l ience  
of the  foam i s  defined as the  area under the  unloading curve as a percent of t he  
area under the  loading curve. The res i l ience  of the  denser foam w a s  52 percent 
before and after the  environmental exposure and thus indicates  t h a t  there  w a s  no 
e f f e c t  of the  exposure on the  recovery rate of t h e  foam. The difference i n  the  
two curves i s  within t h e  sca t t e r  range t h a t  can be expected from two samples cut 
from the  same block of foam. The res i l ience  of the  l i g h t e r  foam w a s  39 percent 
and thus t h e  recovery rate of t he  l i g h t e r  foam w a s  s l i gh t ly  higher than t h a t  of 
the  denser foam. 

The 
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( a )  E f fec t  of t he  environmental exposure. Foam density,  1.7 pounds per cubic foot .  

Figure 7.- Recovery p rope r t i e s  of t he  f l e x i b l e  foams. 
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(b )  Ef fec t  of vacuum on recovery proper t ies .  Foam density,  1.0 pound per cubic foot .  

Figure 7. - Concluded. 

12 



1.0 

.a 

(u 

". 

W 
v) 

k 

.4 

.2 

1.7-lb/cu ft foam 

---- l.T-lb/cu f t  foam (exposed) 

1.0-lb/cu ft foam -- 
- 

- 

1 
0 10 20 30 40 50 60 70 a0 

Strain,  percent 

Figure 8. - S t r e s s - s t r a i n  p rope r t i e s  of  the  1.7-pound-per-cubic-foot f l e x i b l e  foam before and 
a f t e r  t he  environmental exposure and t he  unexposed 1.0-pound-peer-cubic-foot f l e x i b l e  foam. 

Erectable Elements 

Packaging and erection.-  The package r a t i o s  of the t w o  cyl indrical  elements 
were fixed at about 4.8 t o  1 by the  length of t h e  canis te rs  in to  which the  direc- 
t o r  assemblies were packaged. 
be packaged t o  a r a t i o  of about 8 t o  1 with t h e  e f fec t ive  grain properly oriented. 
The grain of t h e  foam w a s  not properly oriented i n  the 1.7 pyramidal element 
( f i g .  3 ) ,  and a package r a t i o  of only 7 t o  1 could be obtained because of the  
transverse def lect ion and folding of t h e  foam. The ef fec t ive  grain of t he  foam 
w a s  properly oriented i n  the 1.0 pyramidal element ( f i g .  4) and the element w a s  
packaged t o  a r a t i o  of about 12 t o  1. 

The 1.7-pound-per-cubic-foot foam could normally 

All elements, regardless of t he  density of the foam i n  the d i rec tor  assem- 
b l i e s ,  erected t o  within 10 percent of t h e i r  o r ig ina l  lengths immediately upon 
release after being packaged fo r  20 hours and retained compression sets of about 
3 percent after 6 hours recovery time. The recovery of the  elements followed the  
same curves as the  foam samples a t  atmospheric pressure given i n  f igure 7. 
addition of t h e  d i r ec to r s  and t h e  necessary bonding agents i n  the  d i rec tor  assem- 
b l i e s  had l i t t l e  e f f e c t  on the  recovery propert ies  of the  foams. The erect ion of 
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the  elements i s  w e l l  within the  allow- 
able  tolerance of f25 percent given f o r  
this type of antenna. (See r e f .  1.) 

Damping propert ies .  - The vibrat ion 
damping of t he  1.0 cy l indr ica l  element 
and the  1.7 pyramidal element w a s  deter-  
mined while vibrat ing f r e e l y  i n  a 
vacuum. Since the  foam dens i t ies  are 
d i f fe ren t  i n  these elements, the data  
are not d i r e c t l y  comparable but are  pre- 
sented t o  give a general idea of the 
frequencies and damping times involved. 
The 1.0 cyl indrical  element vibrated at 
a frequency of 1 . 3  cycles per second and 
damped t o  half-amplitude i n  3.2 seconds. 
The 1.7 pyramidal element vibrated a t  a 
frequency of 3.4 cycles per second and 
damped t o  half-amplitude i n  0.9 second. 
If the  forces  tending t o  def lec t  t h e  
elements were continually repeated a t  
very short  in te rva ls ,  t he  s t i f f e r  pyram- 
i d a l  element would be the more desir-  
able.  Also f o r  a given disturbing 
force,  t h e  amplitude of vibrat ion would 
be considerably less f o r  t h e  pyramidal 
element. 

Temperature d i f f e ren t i a l . -  The 
e f f e c t s  of temperature d i f f e r e n t i a l s  on 
the  1.7 pyramidal element are given i n  
f igure  9.  The element def lect ion rep- 
resents  t he  t i p  def lect ions of the  
d i r ec to r  assembly.. The maximum deflec- 
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Figure 9. - Effec t  of temperature d i f f e r e n t i a l  
on the  1.7 pyramidal element a t  a pres- 
sure of 2 x 10-5 millimeters of mercury. 

t i o n  obtained w a s  1.3 inches at  a temperature d i f f e r e n t i a l  of 250° F. 
def lect ion tolerances previously stated,  it i s  apparent t ha t  somewhat greater  d i f -  
f e r e n t i a l s  can occur without serious degradation t o  the  e l e c t r i c a l  performance of 
t he  antenna. 

From the  

Comparison With Standard Element 

Radiation pa t te rns  of two of the  undisturbed erectable  elements were meas- 
ured and the  results are reported i n  reference 1. A comparison of the  beam widths 
of the  erectable  elements w i t h  those of a standard element over a range of f r e -  
quencies from 1,200 t o  1,750 megacycles i s  given i n  f igure  10. 
ca te  that the e l e c t r i c a l  performance of the  erectable elements i s  e s sen t i a l ly  the 
same as that of the  standard element over t he  f u l l  range of frequencies tes ted .  
Thus, t he  flexible foams i n  the  erectable  elements had no detrimental e f f ec t s  on 
the  e l e c t r i c a l  performance of t h e  elements. 

These data  indi-  
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Figure 10.- Comparison of performance c h a r a c t e r i s t i c s  of the  e rec t ab le  elements wi th  those of a 
standard element. (%e ref. 1.) 

CONCLUSIONS 

The concept of using f l e x i b l e  foam f o r  t h e  e rec t ing  mechanism and supporting 
s t ruc tu re  of e rec tab le  Yagi d i sk  entenna elements f o r  use i n  a space environment 
has been investigated and t h e  r e s u l t s  ind ica te  tha t :  

1. There w e r e  no s igni f icant  detrimental e f f e c t s  of t h e  simulated space 
environment on t h e  recovery proper t ies  and r e s i l i ence  of t h e  f l e x i b l e  foams. 

2. The packaging, erect ion,  damping, and temperature d i f f e r e n t i a l  p roper t ies  
of t h e  e rec tab le  elements were acceptable within t h e  tolerances necessary f o r  
normal antenna performance. 



3 .  The e l e c t r i c a l  performance charac te r i s t ics  of the undisturbed erectable  
elements were e s sen t i a l ly  the same as those of a standard element. 
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